

Table of Contents

Introduction to the Well-Architected Framework 2

Dashbird WAF Insights Features 4

The Security Pillar 5

SAL Questions of the Security Pillar 6

The Operational Excellence Pillar 8

SAL Questions for the Operational Excellence Pillar 10

The Reliability Pillar 12

SAL Questions for the Reliability Pillar 14

The Cost Optimization Pillar 16

SAL Questions for the Cost Optimization Pillar 18

The Performance Efficiency Pillar 20

SAL Questions for the Performance Efficiency Pillar 21

Wrapping up the Well-Architected Framework 24

1

AWS Well-Architected
Framework and serverless

Introduction to the Well-Architected
Framework

The AWS Well-Architected Framework (WAF) is a collection of whitepapers that outline best
practices for building software with AWS infrastructure. The framework is split into one main
whitepaper that gives an overview and five more detailed whitepapers, called pillars. These
pillars are Operational Excellence (OPS), Security (SEC), Reliability (REL), Performance
Efficiency (PERF), and Cost Optimization (COST).

Each pillar contains questions you should be able to answer for your AWS based software.
These answers relate to technical or organizational decisions that are not directly related to
the features your software provides.

For example, when you build a blog, you want people to write
articles and other people to read articles to implement features
for these use-cases. But you also want your system to be safe,
your servers to handle all the traffic, and have all this for a
reasonable price.

The answers to these questions are sometimes as simple as using
a special AWS service (technical). Sometimes, they require you to
implement some kind of process in your company (organizational)
because it can’t be automated entirely.

The most crucial pillars are OPS and SEC. They should never be traded in to get more out of
the other three pillars. This is because the answers to the OPS questions lead to the
foundational setup needed to facilitate the answers to other pillars’ questions with a sane
amount of work. And the savings on SEC could lead to breaches that can destroy your
company overnight.

The other three pillars REL, PERF, and COST, are a matter of business requirements. Going too
cheap may render your system unusable, but going 100% on REL and PERF might be far too
expensive to build a sustainable business. Depending on your budget, you have to weigh
these pillars against each other to get the optimal solution.

Maybe it’s okay for a customer to wait a bit longer for their results, and you invest more
money into long-term data retention. Maybe nobody will use an expensive system that
delivers sub-second results, but they will use one that takes a few seconds but is substantially
cheaper.

AWS also offers a free Well Architected tool and hands-on guides that help understand the
WAF and answer its questions for your software. This way, you can train WAF principles even
without your own software and evaluate architecture ideas you got for the software you want
to or already have built.

2

You can find out
more about how to
save money on your

Lambdas here.

https://dashbird.io/blog/saving-money-aws-lambda/
https://sls.dashbird.io/en/serverless-best-practices
https://sls.dashbird.io/en/serverless-best-practices
https://aws.amazon.com/well-architected-tool
https://www.wellarchitectedlabs.com/

There are additional, more specialized whitepapers, called lenses. These consolidate the
general WAF pillars’ ideas and specify their questions regarding a specific type of software.
For example, serverless applications, machine learning, or IoT.

In this article, we will focus on the Serverless Application Lens, which “covers common
serverless applications scenarios and identifies key elements to ensure that your workloads are
architected according to best practices.” A workload here is a collection of software systems,
called components, that deliver business value.

3

A monolithic software
system can be a workload,

but a collection of different
microservices can also

form a workload.

https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/welcome.html

Dashbird WAF Insights Features

Dashbird features a continuous engine for detecting and enforcing Serverless Well-
Architected practices. Dashbird is constantly running users’ infrastructure data through its
WAF rule engines detecting anomalies and weaknesses within the architecture, and notifying
the users of critical errors and/or when improvements should be made.

This allows developers to build and operate complex Well-Architected serverless applications
without compromising its reliability over time and also be able to layer on complexity later on.

4

https://dashbird.io/blog/building-battle-tested-well-architected-serverless-apps-lessons/

The Security Pillar
As mentioned above, the SEC pillar is one of the two most important pillars, the other one
being the OPS pillar. You shouldn’t trade this pillar in to save money or make a bit faster
responses. If a country you operate in requires you to use a minimal amount of security
measures for a specific type of data or system, you can’t cut corners.

This doesn’t mean you have to encrypt all your data with a one time
pad and mail people hard drives filled with encryption keys. It just
means keeping your system at least as safe as required and
going over that if you can justify it somehow without getting
you and your customers into trouble.

The SEC pillar itself is also subdivided into five parts;
let’s look into them:

5

After all,
 a security breach can

take down your company in
a blink of an eye, so it’s
worth staying safe and

secure!

1.
The first part is “identity and access management,” which forms the core of the pillar. It
could also be called authentication and authorization. If you want to keep your system
safe, you need to know who (identity) is using it and what they are using (access).

Identity and Access Management

2.
The second part is “detective controls.” If you want to protect your system, you need a
way to monitor that security was breached; otherwise, you don’t know it’s safe.

Detective Tools

3.
The third part is “infrastructure protection,” which is about protecting networks and
compute resources. In terms of serverless, most of this is done by AWS because the
services you use don’t expose networks or servers directly. You still need to use the
right access permissions, but you usually don’t need to think about kernel patches or
TCP inspection.

Infrastructure Protection

4.
Then there is “data protection.” You don’t want your data or the data of your users to
get stolen. The most important step in protecting your data is to classify your data by
security needs because encrypting everything as strong as possible is prohibitively
expensive.

Data Protection

5.
Last but not least, there is “incident response.” After you did everything to protect your
system, things can still go wrong, and often your whole reputation is staked on how
“you anticipate, respond to, and recover from incident[s].”

Incident Response

SAL Questions of the Security Pillar

The SAL asks three questions about the security of your serverless applications. Let’s look at
how these can be answered.

SEC 1: How do you control access to your Serverless API?

You can build serverless APIs on AWS either with Amazon API Gateway for HTTP, WebSockets,
and REST APIs or with AWS AppSync for GraphQL APIs.

To authorize internal (that means inside AWS and inside your account) services, you can use
IAM roles. For internal users, IAM users are the solution.

If you need your customers or “end users” to access your APIs, you need Amazon Cognito User
Pools. They help with sing ups and logins and even integrate with social providers to make the
well known “Facebook Login” possible.

If you have to integrate with external services and know the IP
ranges they are hosted on, you can configure resource policies. If
you don’t know the IP ranges, you should use temporary
credentials to give access.

Finally, API Gateway Lambda authorizers allow you to implement
any custom authentication workflow you may need.

SEC 2: How are you managing the security boundaries of your
Serverless Application?

The security principle of least privilege also holds in serverless systems. Don’t give everyone
execution rights to your Lambda functions and only give minimal permissions to every
Lambda function. Also, don’t reuse IAM permissions between multiple Lambda functions and
forget to remove permissions again when they become obsolete.

Your CI/CD pipeline should also include a vulnerability scan that checks your code and all of its
dependencies for security issues right before you deploy it.

API Gateway and AppSync connections are encrypted in transit by default, but you should
keep in mind that the URL might not be, so don’t put private information into the path or
query string. The AWS API services also support selective access logs. They should be
configured in a way that they don’t log sensitive data.

Encryption at rest should be enabled for DynamoDB and S3 if sensitive data is stored.

6

This is
especially helpful
when integrating
with legacy auth

services.

SEC 3: How do you implement Application Security in your
workload?

You should always validate and sanitize all data from the outside and scan your code for
vulnerabilities like you would with non-serverless systems, nothing special here.

And don’t forget to store the credentials to third-party APIs in the AWS Secrets Manager,
so they’re always encrypted at rest.

7

Security Pillar summary

The WAF and the SAL are an exciting collection of
whitepapers to read when building serverless
applications. Not only when you design these systems
but also after you release them to production. It’s a dense
material, and often some things get clearer after you build your
application. It would help if you also looked into Well-Architected Tool,
which is a bit more interactive in questioning you about your system, which can also help
because sometimes we like to skip things we feel uncomfortable with.

This article talked a bit more about the SEC pillar and what it’s all about. Authenticate your
users and services, encrypt private data, and respond accordingly when anything was
breached. Always keep the principle of least privilege in mind when you set permissions; this
goes for everything, not just your public-facing API Gateway. Security has to be applied on
all layers of your architecture; if your front door breaks, you don’t want attackers to storm
right down to the database.

The Operational Excellence Pillar
The OPS and the Security pillar (SEC) form the core of the AWS Well-Architected framework.
The OPS pillar is a catalyst for the other five pillars because it’s mostly about automation in
the development and deployment process.

The basic idea of the OPS pillar is that the fewer tasks humans have to do in a software
project, the fewer errors will happen, and the faster you will be able to react and change
things. For example, if you have a static code analysis inside your continuous integration (CI)
pipeline, many bugs can be found automatically. This enhances security. But if you don’t have
a CI pipeline, you would have to manually run the analysis, which could be forgotten or
skipped.

Let’s look into the four parts that make up the OPS pillar.

8

1.
The people working on a software system need to understand why they do it. Why is it
that this system is created, and what is their role in the whole picture? Who are the
(internal/external) stakeholders? What do they want, what are the security threats,
what does the law require them to do? All these things have to be evaluated;
otherwise, it’s like running around in the dark.

For small teams, this often leads to every single person in the team taking on multiple
duties. Still, if the software has many parts that are all worked on by multiple teams,
things need to be split up, so everyone knows their responsibility to work effectively.
For this, the AWS Well-Architected Framework offers Operation Models, which explain
how a system can be effectively split up between teams.

Organization

2.
First and foremost, keep your team prepared and their skills
up-to-date. If the people working on the software aren’t
used to learn new best practices and experiment with new
things, they will get into a rut. And getting out of habits is
very expensive for companies. You need to take into
account the technical requirements of your system when
you plan it. You should plan the architecture with monitoring
in mind to know what’s happening before and after it was
deployed.

You should also design the system with infrastructure as code right from the start, so
your developers can change everything with code, not just your actual software but
also the services it runs on.

Being ready for failure is imperative too. If you can partially roll-out features and
quickly roll back if something goes wrong, you are much more inclined to try new
things to give an edge in the future.

Prepare

Keep your team
prepared and their
skills up-to-date.

https://dashbird.io/blog/ultimate-guite-monitoring-serverless-applications/
https://docs.aws.amazon.com/wellarchitected/latest/operational-excellence-pillar/operating-model-2-by-2-representations.html

Stay aligned with the Operational Excellence pillar

To maintain operational
excellence, it’s important to
know exactly what’s going on in
your application at all times and
constantly improve weak points
in your application. With one of
our core features being built on
top of the Operational
Excellence principles, Dashbird
helps serverless users do just that
in order to stay aligned with the
AWS Well-Architected
Framework’s best practices.

As opposed to a traditional environment, a serverless infrastructure can encompass thousands
of resources, using tens of different services, which makes monitoring and alerting much more
complex and noisy.

Dashbird doesn’t just show users raw data but automatically translates all their data output
into actionable Well-Architected insights – including warnings and critical errors, which users
will be alerted of immediately. This way, users can debug, optimize, and Well-Architect their
serverless environments before and after deployment.

9

3.
To operate your system effectively, you need to measure metrics on different
abstraction levels. For example, how good does the system itself perform? Can it
handle enough requests? But also, how good do your teams perform? Can they deliver
improvements in an efficient timeframe?

You need to define key performance indicators for your system’s important metrics and
your teams to give you a feeling about what they can do.

You should also be able to react to planned or unplanned events that change your
system’s conditions. Can your system handle more traffic you expect from an ad
campaign? And more importantly, can it handle the increased traffic that hit you
unexpectedly?

Operate

4.
You should define processes that allow you to evaluate and apply changes to your
system. You want to improve on many levels, deliver new features, improve
performance. If things go wrong, you also need a way to include changes that prevent
known errors from happening again.

Evolve

SAL Questions for the Operational Excellence Pillar

The SAL asks two questions about the operational excellence of your serverless applications.
Let’s look at how these can be answered.

OPS 1: How do you understand the health of your Serverless
application?

When you build serverless applications, you end up with many managed services; the
serverless approach dials the microservice architecture to the max. They either integrate
directly or can be glued together with Lambda functions. In a complex application, this can
get messy pretty quickly. You need to implement some kind of monitoring to get insights into
all these moving parts.

A centralized and structured way of logging is the way to go here. If your authentication,
data storage, and API are separate services, why not monitoring? The structure your logs
follow should include some kind of tracing identifier. This way, all log entries that belong to
one task handled by multiple services can be correlated in the end. If your computations 10
layers down fail, you know from what API request it came.

You also have to define metrics that should be measured. AWS services come with a bunch of
predefined system metrics out-of-the-box that get logged to CloudWatch. Still, you should
also think about business metrics (i.e., orders placed), UX metrics (i.e., time to check out), and
operational metrics (i.e., open issues). It doesn’t help that all your Lambda functions run at
maximum efficiency if a user has to do 50 clicks to buy a pair of socks. If you don’t define
crucial metrics, how do you know when to alert someone in your team that things are going
wrong?

OPS 1: Dashbird’s answer

Understanding how your application is running, gathering
insights, and discovering opportunities for performance
and cost optimization are keys.

Dashbird lets you drill into your data on:

• Accounts and Microservices Level, which gives you an instant
understanding of trends for overall application health, the most concerning areas as well
as cost and activity metrics.

• Resource Level, which lets you dig deeper into a specific resource and shows you
anomalies, and past and present errors in order to improve and better align with best
practices.

• Execution Level, which allows users to source full activity details like duration, memory
usage, and start and end times for issues and optimization. Going deeper though, we
can look at the profile of the execution; requests to other resources, how long it took,
and its level of success. We can also detect retries and cold starts here.

10

Observability and
AWS Well-Architected

insights!

https://dashbird.io/docs/application-guide/lambda-functions/
https://dashbird.io/blog/why-serverless-apps-fail-and-how-to-design-resilient-architectures/
https://dashbird.io/blog/why-serverless-apps-fail-and-how-to-design-resilient-architectures/
https://dashbird.io/knowledge-base/monitoring/failure-detection-and-alerting/
https://dashbird.io/knowledge-base/aws-lambda/retries-and-idempotency/
https://dashbird.io/knowledge-base/aws-lambda/cold-starts/

For true operational excellence, monitoring needs to be paired with a good serverless alerting
strategy. Failures and errors are inevitable and so reducing the time to discover and fix is
imperative. Monitoring needs to be constant with preemptive checks continuously running for
security, best practice, cost, and performance.

However, we also need to be able to filter log events for errors and failures; this is the first
step in the alerting strategy. Read more about setting up a winning alerting strategy for
operational excellence.

OPS 2: How do you approach application
lifecycle management?

When you answered the last question sufficiently, you’re able to
start implementing the actual system. The imperative here is:

If you build a new subsystem, you should prototype it with
infrastructure as code (IaC) in a separate AWS account. The IaC tool
allows you to replicate your new system with a click in a production account later. Using
different accounts gives you more wiggle room with the limits on AWS account and limits the
blast radius if something goes wrong. IaC can also be versioned, which makes keeping track
of changes quite a bit simpler.

With CodePipeline and CodeBuild AWS also offers their own CI/CD tools that can package,
test, and deploy your systems directly into different AWS accounts.

11

Always automate.

Operational Excellency Pillar Summary

The OPS pillar is all about enabling your team to do their best work.
It focuses on keeping your team members’ skills up to date and
everyone knowing what’s expected of the system they build.
This doesn’t just mean they should know about the
features they have to implement and how to think about
automation and security.

You should always use IaC to manage your system so that you can
experiment quickly in different accounts.

Don’t forget about monitoring! Cloud services, and serverless services, in particular, often
seem like a black box to many developers. “If I can’t run and debug it on my machine, how
should I debug it at all?” But with monitoring solutions like Dashbird, you can always stay on
top of things, whether it’s about bugs, changes in user engagement, or changes to your
deployments.

http://dashbird.io/features
https://dashbird.io/docs/application-guide/alerting-and-policies/
https://dashbird.io/blog/operational-excellence-serverless-application/
https://dashbird.io/blog/operational-excellence-serverless-application/

The Reliability Pillar
Unlike the Operational Excellence (OPS) and Security (SEC) pillars, the REL pillar is tradable.
You can trade its goals for getting more out of the remaining two pillars: the Cost
Optimization (COST) and the Performance Efficiency (PERF) pillars.

Trading means that you don’t have to go all-in in every one of these pillars. Maybe you want
to save money, so you don’t do global replications, which would make your system more
reliable but also more expensive.

The same goes for the PERF pillar; maybe you want to be as reliable as possible, this can imply
that you wait for eventually consistent data storage to do its thing before you respond to a
client, which makes your system more reliable in terms of a crash, but also slower in terms of
performance.

The three parts that make up the REL pillar:

12

1.
The foundation of the REL pillar is the knowledge of quotas and constraints of the
services you use. If you make a system unreliable because of a bug, that’s one thing,
but if you didn’t know that a service is eventually consistent, you have a greater
problem. This is also true for forgetting that you can only send a specific amount of
requests per time frame to a service.

Luckily, for AWS services, some tools can help with that. The AWS Service Quotas
Console can give you insights about each AWS service and even notify you when your
systems hit the limits of the services they’re using. The AWS Trusted Advisor could also
help to find out how much of a service you already used.

Foundations

Dashbird integrates with the majority of the popular managed services in AWS to
provide alerting and warning notifications for when the usage of a service reaches any
sort of limits, such as timeouts, throttling, out of memory, and the like.

In addition, developers can implement custom alarms and policies for use cases
specific to their environment. Moreover, the platform visualizes the limits of services to
grasp the state of resource usage easily and understand the capacity and long-term
threats to the system.

Managing Foundations

2.
Change management is the anticipation of changes to your serverless system. This
means how customers are changing their system’s usage patterns and how you change
your system in terms of code.

Change Management

https://dashbird.io/blog/aws-well-architected-operational-excellence/
https://dashbird.io/blog/well-architected-framework-security/
https://dashbird.io/docs/application-guide/inventory/
https://dashbird.io/docs/application-guide/alerting-and-policies/
https://console.aws.amazon.com/servicequotas
https://console.aws.amazon.com/servicequotas
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/

13

Dashbird gives engineering teams confidence and the ability to iterate quickly. A large
factor in this is the reduction of the time it takes to detect and respond to incidents.

Another topic that Dashbird helps with is getting real-time visibility into the inner
workings of serverless applications. Developers can use this functionality to monitor the
service at critical times and measure the performance, cost, and quality impact of
system changes.

Staying on top of Change Management

3.
Failure management is about what you do when things fail, and they will fail because
nothing is forever. Serverless services, especially managed ones, provide much of the
failure management, for low-level issues, out-of-the-box, but this doesn’t mean that
everything will keep working indefinitely.

Serverless systems are often event-based and utilize asynchronous communication
rather heavily. In essence, this means if you send a request to an API, it might not
respond with the actual result but just tells you that it accepted your request and will
now start to process it. Now, if something goes wrong along the way, you have no
direct way of finding out in the client that sent the request.

To make sure nothing gets lost, you need to keep track of your events. Implement retry
logic for your Lambda functions with dead-letter queues and log what went wrong.

Failure Management

Dashbird helps you
monitor SQS queues
and provides
functionality to set
alarms for DLQs.

Staying on top
of failures

Examples of this are traffic spikes, which are usually handled automatically by a
serverless system because it can scale out automatically. Still, change management
also includes new features you want to deploy or migrations when you change
databases.

https://dashbird.io/knowledge-base/aws-lambda/retries-and-idempotency/
https://dashbird.io/knowledge-base/aws-lambda/retries-and-idempotency/

Maintaining reliability

A serverless developer needs a tool that automatically monitors for known and unknown
failures across all managed services. Dashbird platform provides engineering organisations
with end-to-end visibility into all monitoring data across cloud-native services (logs, metrics
and traces in one place) combined with an automatic failure detection functionality,
identifying know and unknown failures as soon as they happen.

SAL Questions for the Reliability Pillar

There are two serverless related questions about the REL pillar in the SAL. Let’s look into
them.

REL 1: How are you regulating inbound request rates?

Your serverless applications will have some kind of entry point, a front door, so to say, where all
external data comes into your system. AWS offers different services to facilitate this, one is
API Gateway, and another one is AppSync.

These services, like all the other services you’ll be using downstream, have their limits. It can
lead to reliability issues if you rely on these limits alone. If your system gets sufficiently
complex, it’s not easy to calculate what service will fold first.

That’s why you should set up adequate throttling for API Gateway and AppSync. These
services also allow defining usage plans for issued API keys; that way, you can clearly
communicate how much a customer can expect from your system.

14

https://dashbird.io/docs/best-practices-and-common-use-cases/what-should-you-log/
https://dashbird.io/docs/best-practices-and-common-use-cases/improving-lambda-functions/
https://dashbird.io/knowledge-base/api-gateway/pros-and-cons-of-using-an-api-gateway/
https://dashbird.io/blog/serverless-react-graphql/

It’s also crucial to use concurrency controls of Lambda because it can scale faster than most
services. If you integrate with a non-serverless service and suddenly your Lambda function
scales up to thousands of concurrent invocations, it will be like a distributed denial-of-service
(DDoS) attack.

REL 2: How are you building resiliency into your serverless
application?

The main lever for increasing resiliency is decoupling of logic and
responsibility between resources and designing the system to
handle failures on its own. In most use cases, as much as
possible should be made asynchronous.

In addition to system design, it’s important to have tools and
processes to measure and track system activity and to get
notified on unexpected events in reasonable time windows. No
system will be 100% resilient and have the ability to recover from
any failure. Engineering teams building on serverless should be
responsible for testing their system with different failure scenarios and
make continuous improvements and modifications, constantly learn from past incidents and
thrive to develop the most optimal processes and tooling to respond to incidents.

15

This is a great post
outlining the design

principles for building
resilience into serverless

applications.

The Reliability Pillar Summary

The REL pillar is all about designing your system in a way that
won’t break down. Learn about the services quotas and limits.
Sometimes a service sounds like just what you need before
reading that it can’t handle more than 1000 requests per
second. Throttle your systems entry-points so clients can’t
overload downstream services and give customers clear answers
on what they can expect from your system.

Also, keep everything monitored. The inherent asynchronicity of serverless systems makes
them less straightforward to debug when something has gone wrong; this means you need a
way to get notified when things go out of bounds so you can react quickly. This also means
you need logging data to evaluate what has gone wrong after an incident.

https://kepler452bee.wordpress.com/2019/12/23/architecting-and-operating-resilient-serverless-solutions-on-aws/
https://kepler452bee.wordpress.com/2019/12/23/architecting-and-operating-resilient-serverless-solutions-on-aws/
https://kepler452bee.wordpress.com/2019/12/23/architecting-and-operating-resilient-serverless-solutions-on-aws/
https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html

The Cost Optimization Pillar
The COST pillar concerns itself with the money you spend on your cloud infrastructure. It’s
important to think about your system’s cost because, in reality, the perfect system won’t be
used simply because it’s too expensive.

That means you have to analyze your security, performance, and reliability requirements to
design a system that might not be 100% effective. Still, it’s as efficient as possible, making the
costs of it bearable for day to day business.

This means the COST pillar is also tradable for more performance and reliability. Can your
users wait a few hundred milliseconds longer for the result when they only have to pay a
tenth of the price? Do your customers want to pay a fortune for the fact that your system is
offline only two hours a year, or isn’t this worth their money, and they are okay with one-hour
downtime every three months?

The COST pillar consists of five parts. Let’s look into them.

16

1.
The first step to cloud financial management is establishing a cost optimization
function at your company—someone or a team that spends dedicated time analyzing
costs and proposing optimizations.

Next, you should have financial and technical leads at your company work more closely
together. Serverless technology enables engineers to make better predictions on how
much a customer’s action will actually cost, allowing financial personnel to make better
pricing decisions.

Make sure your processes and company culture are aligned with costs when choosing
AWS services; this way, an otherwise successful project won’t fail in the end because
it’s too expensive to operate.

AWS also helps with tools that forecast the costs of your cloud infrastructure and you
can use Dashbird’s Lambda cost calculator if you’re just starting out. Additionally,
Dashbird has a built-in cost tracking feature helping you understand the per-resource
cost and changes in costs across your serverless infrastructure.

Practice Cloud Financial Management

2.
It’s crucial to get a feeling for what you spent and what is actually used in your system.
Luckily this is often a rather easy mathematical function for serverless technology. But
as your system grows, you have to think about account structure. At least have one
management account with one member account. This way, you can centralize the
billing, making it easier to find out what could be optimized.

Expenditure and Usage Awareness

https://dashbird.io/blog/business-benefits-of-serverless/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/ce-forecast.html
https://dashbird.io/lambda-cost-calculator/

17

Understanding the detailed level of cost across your AWS managed services stack is
key to start identifying optimization opportunities and making changes to drive better
unit economics for your business.

With Dashbird, an organization can understand what parts of the applications are
costing the most and what exactly is driving the cost at a low level (such as latency of
Lambda executions or overprovisioning of resources). After the cost breakdown has
been identified, it is then easy to modify the application to be at the most optimal
configuration between cost, performance, and reliability.

Optimization targets are also required if you want to stay
competitive. Make it your team’s goal to improve
efficiency at least every six months. This can mean
decommissioning resources that aren’t used anymore,
which isn’t much of a problem for serverless systems
because of the on-demand pricing.

But it also means you should be on the lookout for new
features that might lower your bill. Either in terms of
direct savings like lower invocation times or indirectly by
freeing an employee from manual work.

Here’s how Blow Ltd, UK’s leading on-demand beauty services software, reduced their
time to discovery from hours to seconds, freeing up their developers’ time from
debugging to focus on product development.

Make it your
team’s goal to improve

efficiency at least every
six months.

https://www.blowltd.com/
https://dashbird.io/customer/blow/
https://dashbird.io/customer/blow/

SAL Questions for the Cost Optimization Pillar

Well, this time, there is just one question. This is because serverless technology is priced on-
demand, which doesn’t require you to think about what you do with resources you don’t use.

COST 1: How do you optimize your costs?

The starting point for any optimisation journey is first getting a detailed understanding of the
current situation and the cost structure of the application.

18

3.
Use the right service for a use-case and use the right types, sizes, and numbers of
services to do so. Get your data to S3 Glacier if it isn’t used anymore. Think about
Lambda configurations and don’t leave everything on default; sometimes, more
Lambda resources can lead to shorter invocation times that are cheaper in the end.

Don’t forget data transfer costs. Getting data out of AWS is especially costly; you
need to include these costs when using third-party services that extract data out of
your AWS infrastructure.

Cost-Effective Resources

4.
You should match up the demand and supply of your resources, so you have enough if
a spike hits and don’t pay for things that aren’t used right now. In a serverless system,
this is mostly done automatically for you.

Sometimes you have to integrate with non-serverless technology. If your access
patterns lead a non-serverless system to scale up, this takes some time, but it also takes
some time to scale down again, which you have to pay for even if it’s idle later.

Manage Demand and Supplying Resources

5.
As already mentioned, you should always be on the lookout for
optimization opportunities. Just yesterday (December 1st,
2020), AWS released millisecond-based billing for Lambda.
Until then, running under 100ms wouldn’t give you any
cost savings, so you could save optimization time after
you hit that mark. Was it enough to have an off shelve
Python script? It could now be much cheaper to let an
optimized Rust binary do the work.

You should take some time to review new services or new
features of existing services to see if they fit your use-cases
even better. That way, no competitor can outrun you just by
being cheaper.

Optimize Over Time

It could now
be much cheaper to let

an optimized Rust binary
do the work.

https://aws.amazon.com/blogs/aws/new-for-aws-lambda-1ms-billing-granularity-adds-cost-savings/

After understanding the situation and being able to derive insights from it, it’s good to iterate
until you find what configuration is the cheapest that while still delivering the expected
results. Lambda is now billed by the millisecond, so getting an invocation time of 50ms could
be worth your while.

Think about Lambda throttling and parallel executions, especially
if you don’t charge your customers on-demand yourself. If they
pay a fixed amount of money per time frame, but you forget
that they can scale up to thousands of parallel invocations, you
have a serious problem.

Tag your resources, so you know to which project they belong.

Keep logging costs with CloudWatch in mind. Keep your retention
periods low if not required otherwise and only log what you need.

Last but not least, integrate managed services directly. You don’t need a Lambda function to
integrate a DynamoDB table with an API Gateway. This also applies to many other AWS
services. If all your Lambda does is a transformation from one format to another, it could very
well be that you can do the same with a VTL template, which doesn’t have cold-starts or
additional costs.

With Dashbird, your serverless infrastructure is constantly analyzed for optimization
opportunities and opportunities for better decision-making are surfaced in real-time.

19

Tag your
resources.

The Cost Optimization Pillar Summary

Serverless technology gives you a detailed insight into your
costs and many ways to optimize inefficiencies away. You only
pay for what you use, so if you can get away without a
Lambda function and directly integrate two services, you don’t
have to pay for it.

But as with the other pillars, it’s not just about technology. It’s also about people. You have
to keep their skills up to date and foster a culture of curiosity and cost awareness. If your
team can learn new skills regularly, it can very well be that they get new ideas from the
outside without even actively thinking about it. Use-cases that have been too costly before
may now be very affordable.

https://dashbird.io/knowledge-base/dynamodb/overview-and-main-concepts-of-amazon-dynamodb/
https://dashbird.io/knowledge-base/api-gateway/what-is-aws-api-gateway/
http://dashbird.io/features

The Performance Efficiency Pillar

The PERF pillar is all about using cloud resources efficiently. This also
includes efficient operation if the demand changes.

This is a recurring question you should ask yourself a few times a
year. This means selecting the right services for your requirements

and thinking about what those requirements really are.

If you don’t communicate correctly with your customers, it could be
that you want to deliver them something they aren’t interested in paying

for. For example, if you can make a service deliver results in under 100ms time, but your
customers would be okay to get them in a few seconds, you can save on engineering time and
resource cost that such a high-performance system would otherwise require.

The PERF, COST, and REL pillars can be traded for each other to get the best solutions for
your business.

Let’s look into the four parts that make up the PERF pillar, to understand how to achieve this.

20

Do you deliver
the most efficient

solution to your
customers?

1.
There are many services in the AWS portfolio, so you should take some time to research
before using one of them. A focus on serverless architecture removes a huge chunk of
services from this list. But sometimes, it can be beneficial to use a non-serverless
service for parts of your business. If you need real-time performance, an architecture
based on Lambda functions may not cut it, and you have to look into containers.

These services also can be configured in different ways. Lambda alone comes in many
sizes. So even if you only focus on serverless technology, think about how each of these
services can be used most efficiently.

Maybe you need that DynamoDB Accelerator to meet your business requirement.
Maybe, you need a global table to get latency down to an acceptable level. But maybe
you don’t and can focus your optimization efforts on different aspects of your system.

Selection

2.
Use infrastructure as code and automated performance tests. This way, you’re able to
review new options faster and see if they improve efficiency in a meaningful way.
You need well-defined technical and business metrics to measure things. As I said, it’s
cool if you can deliver something in real-time, but if nobody wants to pay for it, don’t
invest time into optimization here.

Paying for it includes all costs here. Not just the operational costs but also the costs of
implementing the solution. More often than not, the engineering building the solution
can be the highest price point.

Review

https://aws.amazon.com/products/
https://dashbird.io/knowledge-base/aws-lambda/anatomy-of-a-lambda-function/

SAL Questions for the Performance Efficiency
Pillar

Again, like with the COST pillar, there is just one SAL question for the PERF pillar.

21

3.
Always monitor your system; otherwise, you don’t really know what it’s doing. This is
true for every pillar. If you build your system based on some assumptions, it could still
fail to meet your goals in practice. After all, they were just assumptions.

You have to gather production data about your efficiency and try to use this real data
for your architecture’s next iterations. This might be a sobering experience, especially
the first few times you do this, but remember, it’s all about getting the right result. It
doesn’t help anyone but your ego if everyone just thinks you were right.

For small-scale serverless environments, AWS CloudWatch could easily do the job, as it
provides just enough data for metrics for invocations, but doesn’t have the ability to
deep dive into retries, cold starts, memory usage, or cost.

Dashbird was built to support and strengthen your serverless
application through a single pane on glass view, out-of-the-box
error and warnings alerts, and actionable best practice
recommendations, no matter the size of the stack.

Integrating with your AWS account, Dashbird takes
monitoring a step further with its AWS Well-Architected
Insights engine proactively assessing your infrastructure,
alerting you of errors, and highlighting optimization
opportunities, and thus, helping your environment to always stay
aligned with the AWS Well-Architected Framework’s pillars.

Monitoring

Dashbird takes
monitoring a step

further.

4.
Sometimes you have to make trade-offs in your architecture. And with sometimes, I
mean always. Jokes aside, this is what makes engineering work interesting. Maybe you
can get away with eventual consistency and deliver much lower latency in turn. But
maybe you run a bank, and making your customer’s accounts eventually consistent isn’t
the best course of action here.

Maybe, you’re tight on personnel and simply can’t afford the complexity a multi-tier
caching solution brings, even if the improved performance sounds awesome. Simplicity
also has a business value in the long run. Always think about what you need and what
you can pay for it regarding money, reliability, durability, and complexity.

Read more about how professional serverless teams manage software issues.

Trade-Offs

https://dashbird.io/docs/dashbird/why-use-dashbird/
https://dashbird.io/docs/dashbird/why-use-dashbird/
https://dashbird.io/blog/operational-excellence-serverless-application/
https://dashbird.io/blog/how-professional-serverless-teams-manage-software-issues/

PER 1: How have you optimized the performance of your
serverless application?

There are a lot of ways to optimize a serverless application. In our experience, the majority of
opportunities come from using the right mix of services and best practices and avoiding
waste through bad architectural design decisions.

For example, using the right databases and downstream services, not waiting in code, and
instead of using Step-Functions to orchestration logic, selecting between API Gateway and
ALB for APIS and such. Often, the majority of your serverless cost and performance overhead
is accumulated in services other than Lambda functions.

An example of optimizing DynamoDB: depending on how predictable your traffic is, on-
demand or provisioned capacity can be the right choice for your DynamoDB tables. The
DynamoDB Accelerator could also be a way to get out that last bit of performance.

Optimising Lambda functions

If you are optimizing Lambda
functions, there are multiple
methods to identify the biggest
opportunities for increased
efficiency. The first thing we
recommend doing is finding the
highest latency and highest
volume Lambdas, that affect
the user experience the most
and focus on them.

Dashbird provides a breakdown
of all the functions and their
performance in a single pane of
class and you can order your
functions based on the highest
throughput and lowest
response times.

When you have identified a problem in any one of your functions, the next step is to dive
deeper and understand where you’re struggling to perform. Is the function execution very
processing-heavy and provisioning more memory would help speed up the execution? Or
maybe it’s waiting most of its execution time after a third-party service, and adding more
resources does nothing to speed up the performance?

To understand the breakdown of an individual invocation, Dashbird integrates with X-ray and
shows the list and duration of each individual activity executed within the function.

22

https://dashbird.io/blog/what-is-serverless-database/
https://dashbird.io/blog/ultimate-guide-aws-step-functions/
https://dashbird.io/blog/ultimate-guide-to-aws-dynamodb/
https://dashbird.io/blog/optimizing-aws-lambda-for-production/
https://dashbird.io/blog/optimizing-aws-lambda-for-production/
http://dashbird.io/features
https://dashbird.io/blog/tracing-lambda-functions-with-aws-x-ray/

Understanding the situation within the
execution enables developers to take
further action and to either experiment with
memory provisioning of an application or
make changes to the services that the
function is communicating with to optimize
the performance or cost a specific function.

On top of helping you optimize your
functions, Dashbird analyses the metrics
and configurations of other managed
services typically used in a serverless
architecture and offers actionable
recommendations on provisioning,
configuration, helping you make informed
decisions about your serverless stack.
Dashbird also surfaces slow and increased-
delay situation across databases, API
Gateways, SQS queues, Kinesis stream, and
others.

23

The Performance Excellency Pillar Summary

The PERF pillar helps you focus on using your resources most
efficiently. Serverless technology often includes
optimizations mentioned in that pillar implicitly, but it’s not
just about choosing the right services.

The PERF pillar is also about configuring the services you use correctly.
Think about the memory size of your Lambda functions. Think about the
deployment configuration of your API Gateway. And also, think about the capacity of your
DynamoDB tables.

Make sure you define the right metrics when monitoring your system; this way, you can
optimize the parts that matter. Also, review new releases every now and then. AWS releases
new services every year and also updates its existing ones. Sometimes your systems just get
faster or cheaper without you doing anything. For example, during re:Invent 2020, AWS
announced strong consistency for S3 without any more cost or configuration, and
millisecond-based pricing for AWS Lambda; your existing apps profit from that without you
doing anything. But sometimes, you need to explicitly configure a service differently to get
the benefits, like with the new 10GB memory size of Lambda.

And finally, remember that everything has a trade-off. Lambda can scale to thousands of
parallel invocations in a matter of seconds, but it could be that your system needs more than
15 minutes of invocation times to do its work.

https://dashbird.io/blog/lower-aws-lambda-bill-increasing-memory/
https://dashbird.io/blog/ultimate-guide-to-aws-dynamodb/
https://aws.amazon.com/blogs/aws/
https://aws.amazon.com/blogs/aws/
https://aws.amazon.com/blogs/aws/amazon-s3-update-strong-read-after-write-consistency/
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-1ms-billing-granularity-adds-cost-savings/
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-functions-with-up-to-10-gb-of-memory-and-6-vcpus/
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning

Wrapping up the Well-Architected
Framework
The WAF whitepapers are a good source of ideas to start improving the systems you build on
AWS. They are very dense, so you might not understand everything right from the start, but
you can always revisit them if you have the time or need to solve technical issues.Sometimes
the examples from the whitepapers only make sense if you tried to build a system by yourself.

Or you can skip all that and let Dashbird’s Well Architected actionable insights, warnings and
errors engine tell you exactly what’s going on in your system, what needs improvement, and
where exactly, what’s about to break and what’s broken. Find out more or book a call – we
love taking serverless and Well Architected.

If you’re building your architecture based on serverless technology, you will follow most of the
advice given in the WAF pillars implicitly, and if not, the SAL focuses on the things that
serverless technology might not solve for you out-of-the-box.

If you’re still curious to learn more about the WAF, how it came about and some more best
practices for each of the five pillars, you can watch our recent session with Tim Robinson
(AWS) here.

24

dashbird.io

https://d1.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
http://dashbird.io/features
https://meetings.hubspot.com/callum31
https://dashbird.io/blog/business-benefits-of-serverless/
https://d1.awsstatic.com/whitepapers/architecture/AWS-Serverless-Applications-Lens.pdf
https://www.youtube.com/watch?v=mhZcjI2sXRY
https://dashbird.io

