Monitoring platform for keeping systems up and running at all times.
Full stack visibility across the entire stack.
Detect and resolve any incident in record time.
Conform to industry best practices.
Dashbird continuously monitors and analyses your serverless applications to ensure reliability, cost and performance optimisation and alignment with the Well Architected Framework.
What defines a serverless system, main characteristics and how it operates
What are the types of serverless systems for computing, storage, queue processing, etc.
What are the challenges of serverless infrastructures and how to overcome them?
How systems can be reliable and the importance to cloud applications
What is a scalable system and how to handle increasing loads
Making systems easy to operate, manage and evolve
Learn the three basic concepts to build scalable and maintainable applications on serverless backends
The pros and cons of each architecture and insights to choose the best option for your projects
Battle-tested serverless patterns to make sure your cloud architecture is ready to production use
Strategies to compose functions into flexible, scalable and maintainable systems
Achieving loosely-coupled architectures with the asynchronous messaging pattern
Using message queues to manage task processing asynchronously
Asynchronous message and task processing with Pub/Sub
A software pattern to control workflows and state transitions on complex processes
The strategy and practical considerations about AWS physical infrastructure
How cloud resources are identified across the AWS stack
What makes up a Lambda function?
What is AWS Lambda and how it works
Suitable use cases and advantages of using AWS Lambda
How much AWS Lambda costs, pricing model structure and how to save money on Lambda workloads
Learn the main pros/cons of AWS Lambda, and how to solve the FaaS development challenges
Main aspects of the Lambda architecture that impact application development
Quick guide for Lambda applications in Nodejs, Python, Ruby, Java, Go, C# / .NET
Different ways of invoking a Lambda function and integrating to other services
Building fault-tolerant serverless functions with AWS Lambda
Understand how Lambda scales and deals with concurrency
How to use Provisioned Concurrency to reduce function latency and improve overall performance
What are Lambda Layers and how to use them
What are cold starts, why they happen and what to do about them
Understand the Lambda retry mechanism and how functions should be designed
Managing AWS Lambda versions and aliases
How to best allocate resources and improve Lambda performance
What is DynamoDB, how it works and the main concepts of its data model
How much DynamoDB costs and its different pricing models
Query and Scan operations and how to access data on DynamoDB
Alternative indexing methods for flexible data access patterns
How to organize information and leverage DynamoDB features for advanced ways of accessing data
Different models for throughput capacity allocation and optimization in DynamoDB
Comparing NoSQL databases: DynamoDB and Mongo
Comparing managed database services: DynamoDB vs. Mongo Atlas
How does an API gateway work and what are some of the most common usecases
Learn what are the benefits or drawbacks of using APIGateway
Picking the correct one API Gateway service provider can be difficult
Types of possible errors in an AWS Lambda function and how to handle them
Best practices for what to log in an AWS Lambda function
How to log objects and classes from the Lambda application code
Program a proactive alerting system to stay on top of the serverless stack
While it is perfectly possible to write code to handle the conditions in workflow transitions, trigger each service, retry failures, etc. The problem is that this can be cumbersome and is likely to not add value to the end users of the application. The same stands for using an open-source1 Finite-State Machine software package.
Here are some of the reasons why to use Step Functions:
Instead of implementing it from scratch and having to deal with another piece of software to secure, deploy and maintain, using Step Functions can cut corners and reduce time-to-market.
The solution is ready to be used, the learning curve is quite flat and easy to get started with. Any development team can start leveraging Step Functions for a variety of use cases in little time, advancing the overall application development and delivering value in a faster pace.
As a serverless, managed service, developers are in fact outsourcing all infrastructure hassle to AWS, which has some of the best-in-class DevOps experts in the world and the largest cloud infrastructure on the planet.
Step Functions can be counted to take care of mission-critical processes. Although it is subject to failure as any technological solution, the likelihood is much lower than it would be in most if not any other in-house implementation.
Depending on the level of usage, it might even be cheaper than implementing an in-house solution. Developer time is expensive nowadays and Step Functions will charge a very small fee for each workflow transition ($0.000025).
Consider an hourly cost of $25 for development services. Ten hours can cover 10 Million Step Functions transitions. Adding up the costs to run a custom solution (virtual machines, load balancing, caching, data persistence, etc), we start to see why Step Functions can actually save money from a project.
No results found