The Biggest Challenges (And Solutions) Of Going Serverless

With the advent of various serverless computing services such as AWS Lambda, Google and Azure functions, Spotinst etc, developers now, more than ever, are reaping numerous benefits that serverless computing offers; top of which includes less responsibility to manage your app’s backend, improved automation and effortless scaling.

All these benefits let the developers focus more on innovation and product itself instead of spending time around admin tasks and infrastructure. Additionally, serverless computing, being a good fit for event-driven applications, is playing a significant role in boosting the rising category of event driven applications which are likely to represent bigger fraction of future corporate applications portfolio.

Nevertheless, there are some challenges associated with going serverless that need to be dealt with in order for it to make its mark on the software development world in a true essence.

Serverless Security Concerns

Various enterprises already employ serverless architectures for building and deploying their services and software. And even though it has greatly helped developers with its inherent scalability and compatibility with other cloud services, however, it is not impervious to some security concerns.

A research by PureSec highlights that the miss-configuration of cloud services and erroneous settings are the most frequent reasons for the leak of confidential, sensitive information. It can supply an entry point to attackers to the serverless architectures as well as provide a way for potential Man-in-The-Middle (MiTM) attacks.

As a matter of fact, serverless architecture makes things so convenient for developers that it may lead to “poor code hygiene” that results in bigger attack surfaces and lurks developers into making awful decisions about security. This doesn’t mean you should not go serverless, but you should be mindful about security. There’s this great article about identifying serverless security risks.

Dormancy Concerns — Cold vs Warm

With serverless architecture, generally no copies of functions are running on standby which indicates that whenever the function will be hit, it is going to be a cold hit. This means that the code needs to be initiated, unlike a warm hit where code is already in running condition prior to any hit, resulting in increased invocation latency.

One solution can be to keep selected functions warmed up. This will make sure that the massive bulk of requests will be encountered with a much lower-latency response. However, the issue with this solution is, that it won’t come cheap and developers will end up paying extra amount for keeping the idle containers warmed-up.

Another solution is to use a load prediction system which will help to analyse the times it thinks service is going to be under a huge load. This can potentially help in addressing the cold hit problem by accurately predicting load intensive spikes.

Dashbird can be used to get a good overview of all your functions and overall application performance. In this manner, developers can get an overview of resource utilization for the entire serverless project and can optimize cost by executing functions with the most suitable frequency in order to avoid the number of cold starts.

Inadequate Application Monitoring

While it is relatively easy to test individual functions, testing the infrastructure and combinations of all functions becomes much harder with the increase in the complexity of the serverless architecture. As a result, it becomes increasingly difficult to manage the countless different endpoints in different environments.

Additionally, high level of abstraction in serverless architecture doesn’t allow access to all customary system metrics such as consumption of RAM and disk usage which notifies about the health of the system. The good news is that there are several supporting services available in the market which ensure that your serverless systems are properly observed even in the absence of metrics’ like memory, CPU, and etc.

Again, this is where Dashbird comes to the rescue by offering real-time insights into your lambda functions.

Lack Of Operational Debugging Tools

Debugging distributed systems is a complex task and generally needs access to a substantial amount of relevant metrics in order to identify the root causes of problems. Even though AWS offers log based performance metrics via AWS Cloudwatch, it is not a good place for debugging because of it’s many limitations.

Dashbird provides a log-based debugging solutions for AWS Lambda users by collecting and analyzing Cloudwatch logs and presenting these in a more actionable way. Dashbird tracks real-time errors and notifies you of any performance problems once they occur in your infrastructure, and thereby, helps you to easily and quickly troubleshoot any errors.

Despite decreasing server management costs, maintenance efforts, scalability planning etc, you should be aware of these challenges before going serverless.

Read our blog

ANNOUNCEMENT: new pricing and the end of free tier

Today we are announcing a new, updated pricing model and the end of free tier for Dashbird.

4 Tips for AWS Lambda Performance Optimization

In this article, we’re covering 4 tips for AWS Lambda optimization for production. Covering error handling, memory provisioning, monitoring, performance, and more.

AWS Lambda Free Tier: Where Are The Limits?

In this article we’ll go through the ins and outs of AWS Lambda pricing model, how it works, what additional charges you might be looking at and what’s in the fine print.

Made by developers for developers

Dashbird was born out of our own need for an enhanced serverless debugging and monitoring tool, and we take pride in being developers.

What our customers say

Dashbird gives us a simple and easy to use tool to have peace of mind and know that all of our Serverless functions are running correctly. We are instantly aware now if there’s a problem. We love the fact that we have enough information in the Slack notification itself to take appropriate action immediately and know exactly where the issue occurred.

Thanks to Dashbird the time to discover the occurrence of an issue reduced from 2-4 hours to a matter of seconds or minutes. It also means that hundreds of dollars are saved every month.

Great onboarding: it takes just a couple of minutes to connect an AWS account to an organization in Dashbird. The UI is clean and gives a good overview of what is happening with the Lambdas and API Gateways in the account.

I mean, it is just extremely time-saving. It’s so efficient! I don’t think it’s an exaggeration or dramatic to say that Dashbird has been a lifesaver for us.

Dashbird provides an easier interface to monitor and debug problems with our Lambdas. Relevant logs are simple to find and view. Dashbird’s support has been good, and they take product suggestions with grace.

Great UI. Easy to navigate through CloudWatch logs. Simple setup.

Dashbird helped us refine the size of our Lambdas, resulting in significantly reduced costs. We have Dashbird alert us in seconds via email when any of our functions behaves abnormally. Their app immediately makes the cause and severity of errors obvious.