Start free trial

Central data platform for your serverless environment.

Get full access to all premium features for 14 days. No code changes and no credit card required.

Password: 8+ characters, at least one upper case letter, one lower case letter, and one numeric digit

By signing up, you agree to our Privacy policy and
Terms and Conditions.

MongoDB (and Atlas) vs DynamoDB – 8 Basic Comparisons


Both DynamoDB and MongoDB are NoSQL databases, but the similarities probably end there. In this article, we cover their strengths and weaknesses in 8 basic categories, so that you can decide which one suits best your needs.

While the data model behind Mongo is more flexible for storage and retrieval, Dynamo is stronger in terms of scalability, consistent performance under heavy load, and infrastructure abstraction.

Mongo also offers Atlas, a managed infrastructure, similar to AWS RDS for running MongoDB Clusters. Nonetheless, Mongo Atlas is not serverless and does not simplify operations as much as DynamoDB. It is still the closest comparison we can make, though.

Below we outline the eight basic differences in how they perform in several categories to support the decision on which one would suit best each of your use cases:

1) Data Model and Access Patterns

Dynamo follows a key-value store data model with tables and items. Data is organized in tables, which contains items. Each item contains a set of key-value pairs of attributes. Only indexed key-values can be queried and there is a limit in how many indexes can be built. Performance remains practically unchanged regardless of the query structure and database size.

Mongo, on the other hand,is centered around collections of documents. Virtually any data point can be queried on Mongo. Performance can vary a lot depending on query complexity and database size.

Both databases support ACID transactions.

2) Schema

MongoDB is schema-free, but it still possible to enforce a schema, if needed. DynamoDB is schema-less, meaning it’s impossible to enforce any kind of schema on the database side.

This difference can be positive or negative depending on your use case.

3) Integrations

As part of the AWS ecosystem, DynamoDB provides great integration with other cloud services. Integrating MongoDB requires considerably higher development and maintenance efforts.

Building event-driven architectures using queues and serverless functions, for example, in connection with your data storage is much easier with Dynamo in AWS.

4) Scalability

DynamoDB offers high scalability by relying on HTTPs API endpoints. Mongo, on the other way, still requires socket connections, which can be an additional source of bottlenecks in your database infrastructure.

The concurrency model is relatively simple in DynamoDB and performance is predictable no matter how you use the database. It is much easier to cross-check the database capacity versus your application demand.

Because of its flexible querying and data modeling, Mongo will probably require a load performance analysis for each case.

For small to medium-sized applications, MongoDB Atlas would probably meet most throughput and storage scalability requirements. For projects that expect high increases or unpredictable demand, DynamoDB might be the safest option to cope with growth.

5) Replication & Distribution

DynamoDB provides Multi-AZ and Multi-Region data replication out of the box, 100% managed by AWS. All the logic and processing for data distribution are also taken care of internally by AWS.

Although MongoDB supports multi-node clusters, it is not trivial to deploy and manage it, especially on a large scale. Mongo Atlas simplifies the process of deploying highly available clusters, which can even run on AWS itself. Still, it does not compare to how simple DynamoDB is.

6) Backup

Backup options are quite similar in both services and would meet the needs of most cloud applications. They will provide options for continuous, point-in-time, and snapshot-based backups.

7) Portability

For being an open-sourced database, MongoDB wins big here, as it can run on virtually any cloud, traditional hosting platforms, and on-prem. Dynamo, on the other hand, is a proprietary database that cannot be deployed outside of AWS.

8) Security

Both services provide a level of security that should be enough for most production cloud deployments. Applications in finance or health data industries might need extra security and certifications that might require a specialized analysis that goes beyond the purposes of this article.

Who uses

Some notable companies reported to use the databases in their projects:

  • DynamoDB
    • Netflix
    • Medium
    • Lyft
    • Intuit
    • New Relic
  • MongoDB
    • Uber
    • Lyft
    • Codecademy
    • MIT
    • CircleCI

In case you would like to explore a more in-depth comparison between Dynamo, Mongo, and Atlas, check out these Learning Center articles: DynamoDB Vs. MongoDB and DynamoDB Vs. Mongo Atlas.

Made by Developers for Developers

Our history and present are deeply rooted in building large-scale cloud applications on state-of-the-art technology. Dashbird was born out of our own need for an enhanced serverless debugging and monitoring tool, and we take pride in being developers.

10,000+ developers trust Dashbird

Dashbird helped us reduce the time to discovery from 2-4 hours to a matter of seconds. This means we’re saving dozens of hours in developer time, which not only can be funneled into improving the product but also means hundreds of dollars are saved every month.

Great onboarding: it takes just a couple of minutes to connect an AWS account to an organization in Dashbird. The UI is clean and gives a good overview of what is happening with the Lambdas and API Gateways in the account.

Dashbird provides an easier interface to monitor and debug problems with our Lambdas. Relevant logs are simple to find and view. Dashbird’s support has been good, and they take product suggestions with grace.

Great UI. Easy to navigate through CloudWatch logs. Simple setup.

Dashbird helped us refine the size of our Lambdas, resulting in significantly reduced costs. We have Dashbird alert us in seconds via email when any of our functions behaves abnormally. Their app immediately makes the cause and severity of errors obvious.

Read our blog

AWS Step Functions Input and Output Manipulation Handbook

In this handbook, you’ll learn how to manipulate AWS Step Functions Input and Output and filter this data.

How to Save Hundreds of Hours on Lambda Debugging

Learn simple ways to save a ton of time when scanning logs to debug errors in your Lambda functions.

Why Are Some Engineers Missing The Point of Serverless?

Why are some engineers missing the point of serverless? Let’s have a look at the common critique points, benefits, drawbacks of serverless, and if it makes sense for your use case.

How Dashbird innovates serverless monitoring

What makes an effective serverless monitoring strategy? In this article, we’re discussing the three core ideas that Dashbird’s serverless monitoring tool was built on top and that should be the fundamentals of any effective serverless monitoring approach.

Debugging with Dashbird: Malformed Lambda Proxy Response

A problem that pops up quite frequently when people try to build serverless applications with AWS API Gateway and AWS Lambda is: Execution failed due to configuration error: Malformed Lambda proxy response.Learn what causes it and how to fix it.

Go to blog